Preconditioned Lanczos method for generalized Toeplitz eigenvalue problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPL+K: Thick-Restart Preconditioned Lanczos+K Method for Large Symmetric Eigenvalue Problems

The Lanczos method is one of the standard approaches for computing a few eigenpairs of a large, sparse, symmetric matrix. It is typically used with restarting to avoid unbounded growth of memory and computational requirements. Thick-restart Lanczos is a popular restarted variant because of its simplicity and numerically robustness. However, convergence can be slow for highly clustered eigenvalu...

متن کامل

Preconditioned Lanczos Methods for the Minimum Eigenvalue of a Symmetric Positive Definite Toeplitz Matrix

In this paper, we apply the preconditioned Lanczos (PL) method to compute the minimum eigenvalue of a symmetric positive definite Toeplitz matrix. The sine transform-based preconditioner is used to speed up the convergence rate of the PL method. The resulting method involves only Toeplitz and sine transform matrix-vector multiplications and hence can be computed efficiently by fast transform al...

متن کامل

Parallel Efficiency of the Lanczos Method for Eigenvalue Problems

Two of the commonly used versions of the Lanczos method for eigenvalues problems are the shift-and-invert Lanczos method and the restarted Lanczos method. In this talk, we will address two questions, is the shift-and-invert Lanczos method a viable option on massively parallel machines and which one is more appropriate for a given eigenvalue problem?

متن کامل

Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems

For real symmetric eigenvalue problems, there are a number of algorithms that are mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred because it uses signiicantly fewer arithmetic operations per iteration. To limit the maximum memory usage, these algorithms are often restarted. In re...

متن کامل

An Implicitly Restarted Lanczos Method for Large Symmetric Eigenvalue Problems

The Lanczos process is a well known technique for computing a few, say k, eigenvalues and associated eigenvectors of a large symmetric n×n matrix. However, loss of orthogonality of the computed Krylov subspace basis can reduce the accuracy of the computed approximate eigenvalues. In the implicitly restarted Lanczos method studied in the present paper, this problem is addressed by fixing the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2008.05.023